CONTEST #4.

SOLUTIONS

4 - **1. 6** Convert the heights to feet first. Then solve 18 + 1x = 12 + 2x to obtain x = 6.

4 - 2. $[\{1/2, -2/3\}]$ This equation is of the form $A^2 + B^2 = (A+B)^2$, which has solutions only if A = 0 or B = 0. Therefore, instead of expanding the brackets and proceeding to solve a quadratic equation, instead solve two linear equations to find $2x - 1 = 0 \rightarrow x = 1/2$ and $3x + 2 = 0 \rightarrow x = -2/3$. The solutions are $\{1/2, -2/3\}$.

4 - **3**. **61** Make use of the fact that a trigonometric function of an angle is the cofunction of its complement. Therefore, A = 90 - 81 = 9 and B = 90 - 38 = 52, so A + B = 61.

4 - **4**. $40 + \frac{32\pi}{3} + 4\sqrt{3}$ The rectangle has area $4 \cdot 10 = 40$. The circle has area 16π . Notice that there is overlap that must be subtracted. This circle intersects the rectangle when $x^2 + 2^2 = 16 \rightarrow x = \pm\sqrt{12}$, so the overlap is the area inside a sector of radius 4 and central angle 120° but outside an isosceles triangle with legs of length 4 and vertex angle 120°. Thus, the overlap has area $\left(\frac{1}{2} \cdot \frac{2\pi}{3} \cdot 4^2 - \frac{1}{2}4^2\frac{\sqrt{3}}{2}\right) = \frac{16\pi}{3} - 4\sqrt{3}$. The area colored in the logo is $40 + 16\pi - \left(\frac{16\pi}{3} - 4\sqrt{3}\right) = 40 + \frac{32\pi}{3} + 4\sqrt{3}$.

4 - 5. $20 + 4\sqrt{7}$ Find the length *BG* using the Law of Cosines: $BG^2 = 12^2 + 8^2 - 2 \cdot 12 \cdot 8 \cdot \frac{1}{2} = 112$. Thus, the perimeter of $\triangle BIG$ is $20 + \sqrt{112} = 20 + 4\sqrt{7}$. **4 - 6.** $\frac{5}{3}$ Use the change-of-base rule to rewrite the equations as $\frac{2\log 3}{\log 5}x + \frac{\log 2}{\log 7}y = \frac{3\log 3}{\log 5}$ and $\frac{\log 7}{\log 2}x - \frac{\log 5}{\log 3}y = \frac{2\log 7}{\log 2}$. Then multiply both sides of the first equation by $\frac{\log 5}{\log 3}$ and both sides of the second equation by $\frac{\log 2}{\log 7}$ to obtain $2x + \frac{\log 5}{\log 3} \cdot \frac{\log 2}{\log 7}y = 3$ and $x - \frac{\log 5}{\log 3} \cdot \frac{\log 2}{\log 7}y = 2$. Adding the equations yields 3x = 5, so $x = \frac{5}{3}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

T-1. A lattice point is a point whose coordinates are integers. How many lattice points satisfy $x^2 + y^2 < 25$?

T-1Sol. [69] Consider the first quadrant. There are four such points with x = 1 or x = 2, three lattice points with x = 3, and two with x = 4, for a total of 13. Thus, there are 4(13) = 52 such lattice points that lie within a quadrant. There are nine on each axis, but one is the origin (and it got counted twice), so our answer is 52 + 2(9) - 1 = 69.

T-2. Many positive integers have 14 positive integer factors. If they were to be listed in increasing order, the second number in the list would be N. Compute N.

T-2Sol. 320 A number with exactly 14 factors must be of the form p^{13} or $p^6 \cdot q$ for primes p and q. The least number of the first form is $2^{13} = 8192$. The smallest numbers of the second form are $2^6 \cdot 3 = 192$, $2^6 \cdot 5 = 320$, and $2^6 \cdot 7 = 448$. Note that $3^6 \cdot 2 = 1458$, which is far greater than N. The answer to the question is N = 320.

T-3. Compute all real values of x that solve $(\sqrt{x+3} - \sqrt{1-x})^3 - (\sqrt{x+3} - \sqrt{1-x})^2 + 4(\sqrt{x+3} - \sqrt{1-x}) = 12.$ **T-3Sol.** 1 This problem is easier to solve if $Y = \sqrt{x+3} - \sqrt{1-x}$, because then the given equation becomes the cubic $Y^3 - Y^2 + 4Y - 12 = 0 \rightarrow (Y-2)(Y^2 + Y + 6) = 0$. The quadratic factor in Y has no real solutions, so we focus on the factor that implies Y = 2. Solving $\sqrt{x+3} - \sqrt{1-x} = 2 \rightarrow x+3 = 1 - x + 4\sqrt{1-x} + 4 \rightarrow x - 1 = 2\sqrt{1-x}$, which has two solutions: x = -3 (which does not check) and $\mathbf{x} = \mathbf{1}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com