CONTEST \#4.

SOLUTIONS

4-1. 6 Convert the heights to feet first. Then solve $18+1 x=12+2 x$ to obtain $x=6$.
4-2. $\{\mathbf{1} / \mathbf{2},-\mathbf{2} / \mathbf{3}\}$ This equation is of the form $A^{2}+B^{2}=(A+B)^{2}$, which has solutions only if $A=0$ or $B=0$. Therefore, instead of expanding the brackets and proceeding to solve a quadratic equation, instead solve two linear equations to find $2 x-1=0 \rightarrow x=1 / 2$ and $3 x+2=0 \rightarrow x=-2 / 3$. The solutions are $\{\mathbf{1} / \mathbf{2},-\mathbf{2} / \mathbf{3}\}$.

4-3. 61 Make use of the fact that a trigonometric function of an angle is the cofunction of its complement. Therefore, $A=90-81=9$ and $B=90-38=52$, so $A+B=\mathbf{6 1}$.

4-4. $\sqrt[{40+\frac{\mathbf{3 2 \pi}}{\mathbf{3}}+\mathbf{4} \sqrt{\mathbf{3}}}]{ }$ The rectangle has area $4 \cdot 10=40$. The circle has area 16π. Notice that there is overlap that must be subtracted. This circle intersects the rectangle when $x^{2}+2^{2}=16 \rightarrow x= \pm \sqrt{12}$, so the overlap is the area inside a sector of radius 4 and central angle 120° but outside an isosceles triangle with legs of length 4 and vertex angle 120°. Thus, the overlap has area $\left(\frac{1}{2} \cdot \frac{2 \pi}{3} \cdot 4^{2}-\frac{1}{2} 4^{2} \frac{\sqrt{3}}{2}\right)=\frac{16 \pi}{3}-4 \sqrt{3}$. The area colored in the logo is $40+16 \pi-\left(\frac{16 \pi}{3}-4 \sqrt{3}\right)=40+\frac{32 \pi}{3}+4 \sqrt{3}$.

4-5. $20+4 \sqrt{7}$ Find the length $B G$ using the Law of Cosines:
$B G^{2}=12^{2}+8^{2}-2 \cdot 12 \cdot 8 \cdot \frac{1}{2}=112$. Thus, the perimeter of $\triangle B I G$ is $20+\sqrt{112}=\mathbf{2 0}+\mathbf{4} \sqrt{\mathbf{7}}$.
4-6. $\frac{\mathbf{5}}{\mathbf{3}}$ Use the change-of-base rule to rewrite the equations as $\frac{2 \log 3}{\log 5} x+\frac{\log 2}{\log 7} y=\frac{3 \log 3}{\log 5}$ and $\frac{\log 7}{\log 2} x-\frac{\log 5}{\log 3} y=\frac{2 \log 7}{\log 2}$. Then multiply both sides of the first equation by $\frac{\log 5}{\log 3}$ and both sides of the second equation by $\frac{\log 2}{\log 7}$ to obtain $2 x+\frac{\log 5}{\log 3} \cdot \frac{\log 2}{\log 7} y=3$ and $x-\frac{\log 5}{\log 3} \cdot \frac{\log 2}{\log 7} y=2$.
Adding the equations yields $3 x=5$, so $x=\frac{\mathbf{5}}{\mathbf{3}}$.

T-1. A lattice point is a point whose coordinates are integers. How many lattice points satisfy $x^{2}+y^{2}<25 ?$
T-1Sol. 69 Consider the first quadrant. There are four such points with $x=1$ or $x=2$, three lattice points with $x=3$, and two with $x=4$, for a total of 13 . Thus, there are $4(13)=52$ such lattice points that lie within a quadrant. There are nine on each axis, but one is the origin (and it got counted twice), so our answer is $52+2(9)-1=\mathbf{6 9}$.

T-2. Many positive integers have 14 positive integer factors. If they were to be listed in increasing order, the second number in the list would be N. Compute N.
T-2Sol. $\mathbf{3 2 0}$ A number with exactly 14 factors must be of the form p^{13} or $p^{6} \cdot q$ for primes p and q. The least number of the first form is $2^{13}=8192$. The smallest numbers of the second form are $2^{6} \cdot 3=192,2^{6} \cdot 5=320$, and $2^{6} \cdot 7=448$. Note that $3^{6} \cdot 2=1458$, which is far greater than N. The answer to the question is $N=\mathbf{3 2 0}$.

T-3. Compute all real values of x that solve $(\sqrt{x+3}-\sqrt{1-x})^{3}-(\sqrt{x+3}-\sqrt{1-x})^{2}+4(\sqrt{x+3}-\sqrt{1-x})=12$.
T-3Sol. 1 This problem is easier to solve if $Y=\sqrt{x+3}-\sqrt{1-x}$, because then the given equation becomes the cubic $Y^{3}-Y^{2}+4 Y-12=0 \rightarrow(Y-2)\left(Y^{2}+Y+6\right)=0$. The quadratic factor in Y has no real solutions, so we focus on the factor that implies $Y=2$. Solving $\sqrt{x+3}-\sqrt{1-x}=2 \rightarrow x+3=1-x+4 \sqrt{1-x}+4 \rightarrow x-1=2 \sqrt{1-x}$, which has two solutions: $x=-3$ (which does not check) and $\mathbf{x}=\mathbf{1}$.

